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SUMMARY 
We describe the implementation of a new 3D vortex algorithm for the computation of the drag and flow field 
around parachutes. Among its novel features, the algorithm couples large eddy simulation methodology 
with the vortex method, away from the wall region. Furthermore, boundary conditions for a wall (no-slip) 
and compliant boundaries were implemented. The results of several simulations using this algorithm are 
analysed and discussed. The spectral contents of the vortex method are also considered. 
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1. INTRODUCTION 

The simulation of flow fields around parachute geometries at  high Reynolds numbers presents 
some inherent At the core of these difficulties is the fact that the problem has three 
length scales. The first is the parachute span, which is of the order of 10m; the second is its 
thickness, which is of the order of l op3  m; the third is related to the wake, whose size can exceed 
200m. The accurate resolution of these different turbulent flow scales in a grid-based model 
seems to be impossible with the present computer technology. As a result, the aerodynamic 
characteristic of a parachute has to be computed using models where the ratio between the first 
two length scales mentioned above is 10 rather than lo4. Furthermore, parachutes undergo 
dynamic shape deformations which are not easy to account for. 

In view of these circumstances simulation techniques which are grid-independent have a clear 
advantage in a realistic modelling of the parachute problem. Accordingly, the vortex method4-'' 
represents, in principle, an ideal paradigm for these computations. In fact, the vortex blobs used in 
these simulations do not require the introduction of a fixed grid. Furthermore, if necessary, 
vorticity generation can be adjusted to account for the physical insights one has about the nature 
of the problem. Nevertheless, due to the large lateral parachute span and the dimension of the 
wake domain, a large number of vortices is needed to obtain a satisfactory representation of the 
flow field. Furthermore, the flows we are interested in are turbulent in nature, and the impact of 
these effects on the vortex blobs in the wake region is important. It is, therefore, essential for our 
purposes to couple the vortex method with a proper turbulence modeL5 

In the past vortex methods were used mostly for inviscid flows in 2D9 although some attempts 
were made6.11,'Z to extend it to 3D. Viscous effects away from the wall were implemented 
through random walk on the position of the vortices. The correct method to include these effects 
directly was found only re~ent ly .~.  However, an algorithm incorporating a turbulence model5 
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with the vortex method had never appeared in the literature. In this paper such an attempt is 
made. For the problem at hand, a coupling between the paradigms of large eddy simulation4, ’ 
and the vortex method seems to be the most appropriate. In this context Smagorinski model” 
was used to model the turbulent eddy viscosity of the flow. 

Due to this coupling, the circulation of the vortices in the wake region decreases smoothly. As 
a result the algorithm became more robust, and a better representation of the wake region 
became possible. Also, the fluctuations in the value of the computed drag tended to be less drastic 
than otherwise. The resulting algorithm is computationally more extensive from the (pure) vortex 
method. However, the effort is not prohibitive as no differential equations have to be solved. 

It is our prime objective in this paper to describe this algorithm and apply it to the computation 
of the flow field and the drag coefficients of parachutes. As an example we present the computa- 
tion of the drag coefficient for a circular plate with different thickness-to-radius ratios, different 
Reynolds numbers and different attack angles near 90” (is. the free flow is normal to the plate). 
Also, different boundary conditions (for a wall and compliant surface) are considered. 

From another perspective flow simulations with the vortex method depend crucially on the 
number of vortices used and the choice of the blob function. In the past, various prescriptions 
appeared in the literature for the choice of this function. The prime concerns were in most cases, 
smoothness, computational simplicity and the stability of the resulting method. However, to our 
knowledge, very little (if any) attention was paid to the impact of this choice on the spectral 
contents of the flow. We shall prove that if the blob function has compact spectral support then 
the computed flow has exactly the same spectral support for all times. Thus, under these 
circumstances, the vortex method mimics large-eddy simulation. 

The plan of the paper is as follows: In Section 2 we present a brief overview of the vortex 
method and its coupling to large eddy simulation. In Section 3 we describe the algorithm that was 
used to implement this method and the effects of compliant boundaries. In Section4 the 
simulation results for the circular plate are presented and discussed. In Section 5 the spectral 
contents of the vortex method is analysed. We end up with some conclusions in Section 6. 

2. BASIC EQUATIONS 

Incompressible fluid flow is governed by Navier-Stokes equations. In proper units these can be 
written as 

v . u = o ,  (1 ) 

d U  1 
at Re 
-+(u - V)u= - v p + -  vzu,  

where Re= Ullv, is the Reynolds number. The vorticity of the flow is defined as 

w = v  x u .  (3) 

By taking the curl of equation (2), we obtain 

dm 1 
at Re 
-+(u . V)w= 0 .  v u  + - v2w. (4) 

The relationship between w and u can be inverted using Biot-Savart law. In three dimensions 
we have 

1 
471 

@(XI, t )  x (x - x’) dx’. c 1 x -x’ 13 
u(x, t )  = - 
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The essence of the vortex method is to discretize the vorticity field in the form 
n 

~ ( x ,  t)= 1 ri(t)6uCx-xi(t)I, (6) 
i = l  

where 6, are 'blob' functions approximating the Dirac 6-function. Usually 6, is chosen so that 

1 
0 3  

6, (x) = - f ( :> 
with the 3D normalization 

471 1; f ( s )  s2 ds = 1. 

Among the various blob functions that are available in 
suggested by Leonard et aL6 where 

(7) 

(8) 

the l i t e r a t ~ r e , ~ . ~ .  l 2  we chose the one 

With this choice of f ( x ) ,  equation ( 5 )  can be integrated explicitly to obtain 

where 
1 2 r 2 + 5  
8n (Y' + 1)5'2. F(r)=4n [if(.).. ds=- 

The evolution equation for the vortex blobs assumes that they follow the characteristic lines 

where ui is the velocity field produced by all the vortex blobs except the ith one. To derive an 
equation for the evolution of the circulations ri, we substitute equation (7) into equation (4). This 
yields 

where 
V26,(X - Xi)' 6,(x - X i )  h(x - Xi). 

Assuming that the blobs do not come close together and 04 1 (this is justified due to the 
merging algorithm which is described in the next section) equation (13) implies that 

However, for the solution of these equations to be a weak solution of equations (1) and (2), we 
must replace12 equation (15) by 
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To account for turbulence effects in this equation, a proper eddy viscosity model must be used. 
This model will replace vo by vo + vT where vT is the turbulent eddy viscosity. In this paper we used 
the Smagorinski model13 to compute this quantity. Thus, 

tiu, au, 
dx, dx, 

vT=C,/(SmnSmn), S , , = - + - ,  m , n = l , 2 , 3 ,  

where n, m refer to the components of the velocity field and Einstein summation convention is 
used. C is a constant that is usually chosen to be proportional to the grid step. In our formulation 
we choose C to be proportional to the blob radius. 

This model was chosen for two reasons. First, it is computationally simple. Second, it is one of 
the more commonly used in large eddy simulations of non-homogeneous turbulence. In fact, in 
the wake region the vortex method can be viewed as a large-eddy simulation on an irregular grid 
whose mesh points are the point vortices. 

3. BOUNDARY CONDITIONS 

In most of the literature, the parachute surface is considered as a solid wall.'-4 Accordingly, the 
no-slip boundary conditions are used 

uI 8R = 0, (17) 
where i3R is the parachute surface. However, in actuality, the parachute should be considered as 
a membrane and appropriate boundary conditions for compliant surface should be used.14*' 

We now describe how these two sets of boundary conditions were implemented. 
On both sides (and edges) of the parachute surface, we introduce a set of grid points xi. The 

spacing A between these points was uniform except at the edges where A12 was used. On 
a staggered grid whose height from the surface is Ro, we define creation points for 'new vortices'. 
To satisfy the no-slip boundary conditions at each time step, the velocity field uf due to the free 
vortices (away from the wall) is computed at the creation points xi. The circulation of the new 
vortices ri at the creation points near the wall must be chosen then so that at each x i  

u b  (Xi 1 + uf(Xi ) = O ,  
where u b  is the flow field generated by the new vortices. Using equation(10) this gives rise to 
a system of linear equations for the circulations ri which must be solved at each time step. The 
size of this system of linear equations can be reduced by a proper use of the structure of the 
coefficient matrix. However, once these vortices are created, they are left to propagate with the 
flow so that in the next time step there are no vortices present at the creation points. Furthermore, 
vortices that crash into the wall are assumed to be absorbed by it. 

When the parachute is considered as a compliant surface, the linearised boundary conditions 
due to BenjaminI4 and othersl5 were used. Assuming that the free flow (far from the parachute) is 
in the z-direction, we can write these boundary conditions as 

(18) 

u(x,  t)+q-=O, au 
az 

av 
aZ u(x, t)+q-=O, 

aw all 
w(x, t)+q-=-, aZ at 
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where u = (u, u, w) and q is the wall deflection in the z-direction (deflections in other directions are 
neglected). Assuming 

and using finite differences to approximate, equations (19) can be rewritten as 

where ucr(i) is the velocity at  the creation point near xi. This represents again a system of linear 
equations for ri which must be solved at each time step. 

In this algorithm, as described above, vortices are shed from the wall region at each time step. 
Hence, a mechanism is needed to control their number through a merger process. However, this 
merge algorithm must leave the flow field unchanged as far as possible. Following Spalart’ the 
merge algorithm sorts the vortices according to their distance and strength (i.e. llri 11). If the 
number of vortices exceeds the computational bounds then those at the bottom of the list (and, 
hence, carrying minimal information about the flow) are merged with their nearest neighbours. 
The circulation and position of the new vortex are 

r= ri + rj, 

where i ,  j represent the indices of the vortices to be merged. In this way the total circulation of the 
flow is conserved, and the new vortex is placed at the centroid of the two merged vortices. 

4. RESULTS 

The algorithm described in the previous sections has been used to compute the flow field and drag 
coefficients of various parachute geometries. We present here the results for a circular plate of unit 
area. In all these simulations we used 3000 vortices and integrated the evolution equations for 
3000 time steps using At =0005. The computed drag coefficients represent averages over the 
value of this variable from iteration lo00 to 3000 (thus avoiding the initial transient state of the 
flow). However, even between these iteration limits the drag coefficient fluctuates widely due to 
(periodic) vortex shedding. Also, the pressure gradients were found to be large near the edge of the 
plate. 

Figure 1 illustrates the dependence of the drag coefficient CD on the thickness of the plate (while 
its radius remains constant). We see that the drag increases as the thickness A is reduced. This 
follows from the fact that as A-0, the flow around the edges resembles a ‘dipole flow’ due to the 
strong gradients there. Figure 2 shows the dependence of CD on the Reynolds number for circular 
plates with thickness of 0.02. As expected CD remains (almost) constant as the vortex method fails 
to find computational evidence for the drag crisis. However, this failure is shared by all CFD 
algorithms in current use. Furthermore, as expected, the vortex method becomes unstable for 
Re 2: lo4. For comparison we observe that for circular plate the experimental value of CD is 1.17. 
Thus, the discrepancy between the value shown in Figure 2 and the experimental value is about 
7%. However, from Figure 1 we see that this discrepancy depends also on the plate thickness. 
This can be used as an indication for the expected accuracy of the method in similar geometries. 
Figure 3 demonstrates that as the attack angle is changed around 90”, the flow field undergoes 
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Figure 4. Circular plate C D  vs. k 
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a bifurcation. This is due to the loss of symmetry in the flow field which in turn leads to 
oscillations in the value of the drag coefficient. 

Figure 4 presents the dependence of the drag on the elastic constant k in equation (20). We see 
that for parachutes the increase in the drag due to turbulence effects is compensated to some 
extent by the elasticity of the boundary. This bifurcation in the drag for non-zero angles of attack 
requires further theoretical investigation. 

5. SPECTRAL ANALYSIS OF THE VORTEX METHOD 

In this section we examine the spectral dependence of the vortex method on the choice of the blob 
function. The derivations will be carried out for 2D as the arguments are more transparent in this 
case. However, the same results apply for the 3D case. 

In 2D, equations (5), (7) and (10) are replaced, respectively, by 

o(x’, t )  dx‘, 

where 

F ( r )  = 271 1; sf(s)  ds. 

In the literature various forms of f(x) were used. In KPDl2 code’ two such functions are 
mentioned 

[ 0 x>l. 

Beale and Majda (inspired by large eddy simulation methodology) suggested16 

1 
f3 (x) = - e - x2. 

71 

HaldI7 used 
1 

3nx2 f&) =- [4J2(W-J2(x)l, 

where Jz is the second-order Bessel function. Fishlov’ showed that a sufficient condition for the 
stability of the vortex method is that the Fourier transform of f(x) must be non-negative 
and used’ 

1 
271 1 (29) f 5 ( x ) = -  [4e-x2-e-x2/* 

in the numerical computations. 
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From a spectral point of view, however, it is clear that &(k, t)-the spectral transform of 
o(x, t)-is given by 

o ( k ,  t ) = I I e i k "  w(x, t)dx=-ZCrj(t)eik'Xj n f: Io2ffj( :) eikr,cos(o-d r j  d6' drj, (30) 
1 

where k = ( k l  and rj=Ix-xjI. But 

hence 
h(k, t) = 271xrj(t) eik.xj f(r) J o  (kor) r dr. j: 

Thus, the spectral decomposition of w(x,  t )  for all times is determined by the Bessel transform of 
the blob function f(x). 

To see the implications that this has for the flow field, we first rewrite equation (24) in the form 

(6) 1 
U(X, t)= --Irj-F 2 e8,, 

271 rj (33) 

where er,=rj/rj, eej and e, form a right-handed frame at xj. For the spectral decomposition of u, 
we, therefore, have 

and, therefore, 

a(k, t)= - (35) 

Thus, we proved that the spectral decomposition of the flow is determined by the Bessel 
transform of F(r)/r. In particular, if this function has a compact spectral support then the flow will 
have exactly the same support for all times. 

For the blob functions given by equations (28) and (29), the Bessel transform &(k) of f4 is zero 
for k>2. Similarly, all other blob functions mentioned above have an effectively finite spectral 
range. That is $(k )  is practically zero for large k. Furthermore, as J ( k )  are not constant, they 
introduce without any physical justification an a priori bias in the simulation. To neutralize it 
partially, one must use simulations with large number of vortices for long periods of time. (As 
a result, the phase factors in equation (35) will, hopefully, cancel the initial spectral bias.) One 
possible way to overcome this difficulty is to perform an unbiased vortex simulations using a blob 
function whose Fourier spectral decomposition is of the form ('top hat' functions) 

1, Ikl<k,, 
0, otherwise. 

The use of such a blob function with large enough ko and a large number of vortices ensures that 
the simulation is unbiased and has enough degrees of freedom to obtain a true spectral 
representation of the flow. 

In 2D, the inverse of f6(k) is 
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and, therefore, 

F d X )  = 1 - J o P o  I XI ). 

In 3D, the inverse of f(k) is given by 

, r=Ix/, (39) 
f,(x)=? J;'j3(s)s2 sin kor 

kor  sin k o r -  15 ~ 

ko r 
where j ,  (x) is the third-order spherical Bessel function. 

Using f6(x) with different ko ,  we simulated the flow normal to a 2D plate at Re = 5 x lo5 with 
the vortex method. In all these simulations, we used 2000 vortices and integrated the evolution 
equations for 3000 time steps using At = 0005. The results for the computed drag coefficients are 
shown in Figure 5. These coefficients represent averages over the value of this variable from 
iteration 1000 to 3000. From this figure we see that as ko  increases and the blob function include 
wave numbers which are critical to the correct simulation of the flow, there is sudden change in 
the value of the drag on the plate. 

In view of these results, it is natural to inquire as to the existence of the optimal blob function. 
However, it seems improbable that universal optimal blob function exists. Nevertheless, from 
a practical point of view one may tailor the choice of f(x) to the 'prototype' problem at hand. This 
can be done by simulating accurately one of the typical flows under consideration and computing 
the actual spectral decomposition of w in the desired range of Reynolds numbers. The derived 
blob function can be used then in the simulation of similar flows. 

0 ?1 
0.0 1.0 2.0 3 0 4.0 5.0 6.0 7.0 

kO 

Figure 5 .  2D Plate CD vs. ko 
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6.  CONCLUSIONS 

This paper presented a coupling between the methodologies of large-eddy simulation and the 
vortex method. This coupling led to a stable algorithm which allowed us to explore various 
dynamical aspects of the flow around very thin structures such as parachutes. This does not seem 
to be possible in grid-based algorithms at the present time. The algorithm is computationally 
intensive but, with advances in computer hardware, it is hoped that a substantial increase in the 
number of vortices used in these simulations will be possible. This will enable us to model and 
resolve other aspects of turbulent flows such as flow separation and the drag crisis. Furthermore, 
the optimal choice of the blob function for the simulation of flows with high Reynolds numbers 
merits further investigation. 

We also showed in this paper that the spectral contents of a vortex simulation is strongly 
coupled to the choice of the blob function. A universal optimal blob function may not exist. 
However, for each class of flows it must be possible to determine such a function. In particular, for 
turbulent flows, Kolmogorov 5/3 law can be used to determine this function in the inertial range. 
Failing this, the functions fs(x) in 2D and f 7 ( x )  in 3D with large enough ko seem the most 
appropriate. These functions contain unbiased range of wave numbers and the amplitude of each 
k will adjust to the true spectral decomposition of the flow if enough vortices are used in the 
simulation. 
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